Posts

CANTOR SET

Image
                                                             CANTOR SET                  INTRODUCTION :                                      We have learn about open sets and its characterization on the real line.  We now consider the structure of its closed sets. Among the simplest closed sets on the real line are the closed intervals and finite union of closed intervals. Finite sets are also include the single point set which is a closed interval with equal end-points.    Now we are going to study the character of the most general closed sets on the real line.    One of the most general proper closed subset of the real line is obtained by removing a countable disjoint c...

LINE INTEGRALS- PROBLEMS & SOLUTIONS #lineintegrals #problems #solutions

Image
  LINE INTEGRALS - PROBLEMS &SOLUTIONS :       We have discussed about the definitions and development of line integrals .  Here we going to solve some problems regarding line integrals.  PROBLEM 1 :  .   Evaluate  ∫ dx/(x+y),  Where C  is the curve x=at 2 ,y=2at, 0 ≤ t ≤ 2. SOLUTION :                          PROBLEM 2 :   Show that ∫ xy dx  =4/5, where C is the arc of the parabola y 2 =x from (1,-1) to   (1,1). SOLUTION :                         3.   PROBLEM 3 :  Show that ∫  [ (x-y) 3 dx+(x-y) 3 dy]=3 πa 4 , where C Is the circle x 2 +y 2 =a 2  in       the counter clockwise sense.         SOLUTION :                                ...

PROPERTIES OF COMPACT SETS

Image
Compact Set   : A subset K of a metric space X is called compact if every open cover  has a finite sub cover. The compact sets has come properties .  Here we see their properties with proofs. Property 1. Closed Subsets Of Compact Sets are Compact . proof : Property 2 : The intersection of any collection of compact subsets of a metric space with finite intersection property is non-empty. Proof :   Property 3: Compact subsets of metric spaces are bounded. Proof :   property 4 : Compact subsets of metric spaces are closed. Proof :         People also see :  1. What is an open cover?  2. What is cantor intersection theorem ?  3. What is a metric space?  4. What is a closed set?  5. What is a Pseudo-metric ?  

COMPACT SETS IN METRIC SPACES : #compact #metric #spaces

Image
Compact Sets In Metric Spaces :  Contents : * Open Cover of a metric space * Open Sub Cover of a metric space  * Compact Set  *  Examples                                                                                     Open Cover :                       Let K be a non-empty subset of a metric space X. A collection {G⍺/⍺ ꜪΔ} of                            open subsets of X is called an open   cover of K if K⊆⋃ G⍺.                       For example : Consider a metric space (R,d) where R is the set of all real                    ...

DOUBLE INTEGRALS - PROBLEMS WITH SOLUTIONS #double #integral

Image
 Double Integrals : Problems & Solutions :                                                                           This page having some problems on Double Integrals followed by solutions.                                                                                      1.      1.   Evaluate ∬   xy (x 2 +y 2 )dx dy over [0,a;0,a]. 2.       2 .  Evaluate   ∬ xy (x 2 +y 2 )dx dy over [0,a;0,b]. 3.        3 .  Evaluate  ∬  ye xy  over [0,a;0,b]. 4.      4 .  Ev...