BASIC DEFINITIONS : REAL ANALYSIS #basic #definitions #real #analysis

https://youtu.be/Qz6MkcPX_FU?si=L5lR3p1Ld4bK4HnT

 BASIC DEFINITIONS :


                                     In this session , I am going to give definitions and few examples of 

 * set

 * upper bound of a set

 * lower bound of a set

 * greatest lower bound or infimum of a set

 * least upper bound or supremum of a set

 * bounded above, bounded below and                      bounded sets.

 * Diameter of a set.

 * Distance between a point and a set

 

SET

       A set is a collection of numbers or elements or objects etc.

     For example

             * the collection of numbers which contain 1,2,3,... is called the set of natural numbers.

             * The  collection of all people aged between 25-30 is called a set.

             * The collection of numbers with the same properties is a set etc.

    Note

              * A set which has no elements is called a Null or Empty set. Basically empty set can be 

                 denoted by { } or Φ.

             * If a set has atleast one element is called then the set is called a non-empty set.

             * If a set has exactly one point then the set is called a point set.

 Types of intervals :

             For any real numbers  a, b, (a ,b) = {x/a<x<b}

                                                         [a,b] = {x/a≤x≤b}

                                                                     (a,b] = { x/a<x≤b}

                                                                      [a ,b) = { x/a≤x<b}

 UPPER BOUND OF A SET :   An element x of an aggregate or a non-empty  set S is called  an upper bound of S

                                                  if a ≤ x for every a Ꜫ S. i.e. x is greater than every element of S.

                                                   For example if we consider (0,1) , every element in (0,1) is less than 1. Hence 1 is an

                                                   upper bound of (0,1). Not only 1 every number which are coming after 1 is an 

                                                   upper bound of (0,1).

                                                              


 LEAST UPPER BOUND OR SUPREMUM :

                                                  An element x of an aggregate or a non empty set S is called a least upper bound  or

                                                  supremum  if 

                                                   i . x is an upper bound of S

                                                  ii. If there exists an upper bound of S y such that x<y.

                                                  a least upper bound can also be written as l.u.b

                                                  In simple words " a supremum is least among all upper bounds of S."

 LOWER BOUND :

                                                 An element x of an aggregate or a non-empty  set S is called  an lower bound of S

                                                  if a  x for every a Ꜫ S.  i.e. x is less than every element of S.

                                                  For example if we consider (0,1) , every element in (0,1) is greater than 0. Hence 0 is 

                                                  called a lower bound of (0,1). Not only 0 every number which are coming before 0 is 

                                                   a lower bound of (0,1).

  GREATEST LOWER BOUND OR INFIMUM :

                                                  An element x of an aggregate or a non empty set S is called a greatest lower bound  

                                                  or infimum  if 

                                                   i . x is a lower bound of S

                                                  ii. If there exists a lower bound of S,  y such that x>y.

                                                  the greatest lower bound can also be written as g.l.b.

                                                  In simple words " an infimum is greatest among all lower bounds of S."

     NOTE :  * The infimum or supremum of a set may or may not lie in the set.

                   * In any interval (a,b), [a,b], (a,b], [a,b) the end points i.e. a and b are the infimum and supremum

                       respectively.

                    * In any interval (a,∞) , ∞ is not considered as supremum and (-∞,a), -∞ is not considered as 

                       infimum.

   BOUNDED ABOVE SET : A set S is called a bounded above set if it has at least one upper bound.

                                              For example : (-∞,2) is bounded above as it has an upper bound  2. If a set  has said   

                                              to bounded above, the set need not to have  a lower bound.

   BOUNDED BELOW SET :  A set S is called a bounded below set if it has at least one lower bound.

                                              For example : (2,) is bounded below as it has a lower bound  2. If a set has said to 

                                              bounded below, the set need not to have  an upper bound.

   BOUNDED SET :               A set is called a bounded set if it has both lower and upper bound i.e an infimum and

                                              a supremum.

                                              For example (1,2) is a bounded set as it contains lower bound 1 and an upper bound

 DIAMETER OF A SET :

   The diameter of a non-empty set A is the greatest distance among all distances between the points of A and it is denoted by d(A). 

   d(A)= sup {d(x,y)/x,y in A}.

 DISTANCE BETWEEN A POINT AND A SET :

  Let A be a sub set of a non-empty set X and x€X. The distance between x and A is the least distance between x and the points of A i.e. inf {d(x,a)/a€A}.

#basic #definitions #real #analysis

#set #upper #bound #lower  #infimum  #supremum #bounded  #above  #below 






























































































































Page navigation



                   

Comments

Popular posts from this blog

Welcome to my blog : DEVOTIONAL & MATHEMATICS # welcome # to #my #blog #devotional #& #mathematics

sin30=1/2 what it means? 🤔 #sin30

REAL ANALYSIS- INTRODUCTION #real #analysis #introduction