EUCLIDEAN LINE, PLANE AND SPACES #EUCLIDEAN #LINE #PLANE #SPACES

EUCLIDEAN LINE, PLANE AND SPACES     


 We know about the real line or real number system R, R is one dimensional.

Consider the two dimensional plane R2={(a ,b)/ a ,b Ꜫ R}.

In R2 ,the elements of the form (a ,b) are called the ordered pairs of a & b.

In R2, the addition and multiplication are defined as

for x=(a1,b1) , y=(a2,b2) in R2                               
                                      

x +y=(a1+a2,b1+b2 ) and x .y=(a1.a2 ,b1.b2)

Here R2 is called as an Euclidean  plane.

Now consider the three dimensional space R3={(a ,b ,c )/ a ,b ,c  R}.

In R3,the elements of the form (a ,b ,c) are called ordered triples of a, b, c.

The addition and multiplication in  R3 are same as in R2 .

Similarly in R4, the elements of the form (a ,b ,c ,d) called as ordered 4- tuples of real numbers in which the addition and multiplication are same as in R2 &  R3.

∴In general the nth dimensional Euclidean space Rn of all ordered n-tuples of real numbers of the form (a1,a2,…,an )

i.e.,  Rn = {(a1,a2,…,an ) / a1,a2,…,an Ꜫ R}.                             

 In Rn the addition and multiplication are defined as 

for x= (a1,a2,…,an ) ; y=( b1,  b2,…,  bn Rn, where a, b

x+y= (a1+  b1, a2+ b2,…, an+ bn) and 

x.y = (a1.  b1, a2. b2,…, an. bn)  also

for any 𝛂 Ꜫ R,   ax= (𝛂a1, 𝛂a2,…, 𝛂an ).

In    R , the absolute value of x is defined as |x| = √ (a12+a22+…+an2 )  

                                                            = square root (a12+a22+…+an2 )    

          * for n>2, the sets Rn are called Euclidean spaces,

          * R2 is called Euclidean plane whereas 

          * R is called an Euclidean line.



#euclidean   #space #line #plane

#pair #ordered #n-tuple #addition #multiplication

Comments

Popular posts from this blog

Welcome to my blog : DEVOTIONAL & MATHEMATICS # welcome # to #my #blog #devotional #& #mathematics

sin30=1/2 what it means? 🤔 #sin30

REAL ANALYSIS- INTRODUCTION #real #analysis #introduction