PSEUDO METRIC & NORM OF A FUNCTION #pseudo #metric #norm #of #function


https://youtu.be/CoYUxNtFOt4?si=1NLs0hEpNkRjJvBo

  Contents :

1. Norm of an element

2. Norm of a function

3. Pseudo Metric


NORM OF AN ELEMENT :

              In each space there is defined a notion of the distance from an arbitrary element to origin, that is, a notion of the " size " of an arbitrary element. The size of an element x is a real number denoted by ||x|| and called its " norm ". For any arbitrary element x , the  norm of x i.e. ||x|| has the following properties :

   1. ||x||   ≥0 and 

        ||x|| =0 iff x=0.

   2.  ||-x|| =||x||

   3.  ||x+y|| ≤ ||x|| +||y||.

            Each metric arises as the norm of the difference between two elements d(x,y)= ||x-y||.

     NORM OF A FUNCTION :    


                Let X be the set of all bounded continuous real valued functions defined on the closed interval [0,1].

 Now we define the norm of a functionꜪ X as ||f|| = sup { |f(x)|/ x Ꜫ [0,1] }.

Also the metric on this x is defined as 

   for any f,g ꜪX,  d(f,g) = ||f-g|| = sup { |f(x)-g(x) |/x Ꜫ [0,1] }

   Note :  There are so many definitions to norm of a function ||f||.  One of them is ||f|| =∫ |f(x) dx, and the induced metric  by d(f,g) = ∫ |f(x)-g(x)|

PSEUDO METRIC :

   Let X be a non-empty set , and let d be a real function of ordered pair of elements of X which satisfies the following conditions.

 i. d(x,y)  ≥ 0 and

      x=y implies d( x,y ) =0.

 ii. d(x,y) =d(y,x)

iii. d(x,z) ≤ d(x,y)+d(y,z)

   A function d with these properties is called a pseudo - metric on X and hence X is called a pseudo-metric space.

Note:

  A metric is obviously   a pseudo-metric . But every Pseudo- metric is need not  be a metric.

why?

 Let here we see the  example :

   Consider the metric space R2 and a function d  :RxR→[0, ∞) by

 d( (x1,y1),(x2,y2) )= |x1-x2|

 Is this function d a pseudo-metric or metric?

Verification :

i.                     Since the absolute value of any variable is non-negative , this mapping d is also non-negative.

ii.                    For any (x1,y1), (x2,y2) in R2 ,  suppose (x1,y1) = (x2,y2)

                                                                → x1x2 and y1=y2

                                                                → x1-x2 =0

                                                                → | x1-x2 | = 0

                                                                → d( (x1,y1),(x2,y2) ) = 0

iii.                 d( (x1,y1),(x2,y2) ) =    | x1-x2 |

                               =   | x2- x1|

                               =  d( (x2,y2),(x1,y1) )

                      d holds symmetry.

iv.                 d( (x1,y1),(x3,y3) ) = |x1-x3|

                              = | x1-x2+x2-x3|

                              ≤ | x1-x2|+|x2-x3|

                              = d( (x1,y1),(x2,y2) ) + d( (x2,y2),(x3,y3) )

 

d( (x1,y1),(x3,y3) )  ≤ d( (x1,y1),(x2,y2) ) + d( (x2,y2),(x3,y3) )

d satisfies transitivity.

 So by all these properties d is a Pseudo-metric on R2.

Now what about d( (x1,y1),(x2,y2) ) = 0 implies (x1,y1)  = (x2,y2)?

 Verification :

  For (3,5),(3,7) in R2, d( (3,5),(3,7) ) =|2-2| =0

                                     But (3,5) ≠ (3,7).

  Hence this pseudo-metric is not a metric.

People also ask

* What is a metric?

* What is a metric space?

* what is a discrete metric?

* what is usual metric?

* What is a countable set?

* What is an interior point?

* What is a limit point?


 





#pseudo #metric #norm #of #function #symmetry #transtivity






















































































































































Page navigation


                                                    

   

                                


         

Comments

Popular posts from this blog

Welcome to my blog : DEVOTIONAL & MATHEMATICS # welcome # to #my #blog #devotional #& #mathematics

sin30=1/2 what it means? 🤔 #sin30

REAL ANALYSIS- INTRODUCTION #real #analysis #introduction