CONVERGENCE & CAUCHY SEQUENCES : #convergence #cauchy #sequence #complete #metricspace

       

           https://youtube.com/shorts/Fv4sRrsSy1M?si=2mMCLGuBjyr7kFJP


   One of our main aims in considering metric spaces is to study convergent sequences  in a context more general than that of classical analysis. The fruits of this study are many, and among them is the added insight gained into ordinary convergence as it is used in analysis.                        

              Convergent and Cauchy Sequences :

Contents:

1. Convergent sequence and limit point.

2. The limit point of a convergent sequence is unique 

3. Cauchy sequence

4. Every convergent sequence in a metric space is a cauchy sequence                                     

5. Complete metric space 

  1.convergent sequence:- 

      Let X be a metric space with the metric d and let {xn}= {x1,x2,…,xn,…}   be a sequence of points in X. 

     We say that {xn} is convergent if 

(a) ∃ a point x in X such that for each ɛ>0, there  exists a positive integer N such that for all            n≥N  implies d(x,xn)<ɛ

                                                                  (or)

 (b) For each open sphere Sr(x) centered on x, there exists a positive integer N such that               xn ꜪSr(x)  for all n⩾N.

       Here the point x is called the limit point of  {xn}.

                                                                   (or)

 (c)  d(x,xn) tends to 0 as n tends to ∞

Example:  

            The sequence {xn} = {1/n} converges to 0.

2. In a metric space, the limit point of a convergent sequence is unique. 

Proof :  


3. Cauchy sequence:

      Let X be a metric space. A sequence {xn} in X is said to be a Cauchy sequence in X for a given ɛ>0, there exists a positive integer N with m, n ⩾N  implies d( x,xm) < ε.

                                              

                                                        Cauchy Sequence

Example:- 

        {1/n} is a Cauchy sequence 

Result:- Every convergent sequence in a metric space is a cauchy sequence.

Proof :  


Complete metric space:- 

     A complete metric space is a metric space in which every Cauchy sequence is convergent.

   i.e., if a Cauchy sequence is convergent means the limit point of the Cauchy sequence must lie in the       metric space.

If we see the following example,

Consider X=(0,1] and {1/n} be a Cauchy sequence in (0,1].

We know that {1/n} converges to 0 but 0∉(0,1].

Here {1/n} is a Cauchy sequence but its limit point 0 not lie in (0,1].

       ∴ (0,1] is not complete.

People also ask :

1. What is a metric space ?

2. What is a Pseudo-metric?

2. What is an open sphere?

3.What is a limit  point?

4. What are open sets?

5. What are closed sets?


 #convergence #cauchy #sequence  #complete #metricspace



















































































































































Page navigation




        

Comments

Popular posts from this blog

Welcome to my blog : DEVOTIONAL & MATHEMATICS # welcome # to #my #blog #devotional #& #mathematics

sin30=1/2 what it means? 🤔 #sin30

REAL ANALYSIS- INTRODUCTION #real #analysis #introduction