LINE INTEGRALS #line #integrals #plane #curve #closed #orientation

                                     Integration in R2  :    Line Integrals      
contents : 
 1.plane curve in R2
 2. Curve in R3
 3. Curve in Rn   
 4.Closed Curve
 5. Oriented Curve 
 6. Line Integral
 7. Problems on Line integrals. 
                                                      



1. Plane Curve in R2
                                    If ⲫ , ψ are two real valued  functions of t defined on [α , β ] , then the set {(x ,y )/ x= ⲫ (t), y=ψ(t),tε[α,β]} 
       is known as a curve in R2.
          For example 
                      The set { (x ,y)/x2+y2=1} is known as a curve in R2.

Note :

  * Curve In R2 is a function from [α , β ] to R2.

  *  The set {(x ,y)/x=f(t),y(t),t ε[α,β]}  or the set { (x ,y)/x=t, y=f(t), tε[α,β]} is also called a curve in R2.

2. Curve in R3 :

                    If , ψ , η are real valued functions of t; then the set  {(x , y, z) /x=  (t), y=ψ(t),z= η(t), tε[α,β]} is called a curve in R3.

Note  :

            A curve in R3 is also a function from [α , β ] to R3.

         For example the set {(x , y, z )/ x2+y2+z2=1} is a curve in R3.

Curve in Rn

                 If 1, ⲫ2,…, ⲫn are real valued functions of t, then the set

       {( x1,x2,…,xn)/x1= ⲫ1(t),x2= ⲫ2(t),…xn= ⲫn(t)/ tε[α,β]} is called a curve in  Rn.

Note : Curve in Rn is a function from [α , β ] to Rn.

Closed curve  :

        The set {(x ,y )/ x=  (t), y=ψ(t),tε[α,β]} is said to be closed if  ⲫ(α)= ⲫ(β) and ψ(α)= ψ(β).

Oriented curve :

                If t increases from α to β , the curve formed by joining the corresponding points (ⲫ(t), ψ(t)) , in that order is said to be oriented from α to β.

                   OR

              An orientation of a curve is choice of one of the two possible directions for travelling on the curve.  In coordinate system, X-axis is oriented towards the right and  the Y-axis is in upward orientation.

 

Line Integrals

                        The following image tells about the derivation of a line integral.

               



     Problems on Line Integrals :

    1. Evaluate  ∫ dx/(x+y), Where C  is the curve x=at2,y=2at, 0t2.

2.      2. Show that ∫ xy dx =4/5, where C is the arc of the parabola y2=x from (1,-1) to (1,1).

3.      3. Show that ∫ [(x-y)3dx+(x-y)3dy]=3πa4, where C Is the circle x2+y2=a2 in the counter   clockwise sense.

4.      4. Find the value of ∫(x+y2)dx+(x2-y)dy, taken in the clockwise sense along the closed       curve C formed by y2=x and y=x between (0,0) and (1,1).

5.      5. Show that∫(xdy-ydx)/x2+y2= -2π, round the circle x2+y2=1; or any simple closed curve containing the origin in its interior.

6.      6.  Evaluate ∫x2+y2dx and x2+y2 dy where C is the arc of the parabola y2=4ax between    (0,0) and (a,2a).

7.      7.  Show that ∫x2 dx+xy dy=0, where C is the arc of the circle x2+y2=1 from (1,0)  to        (0,1).

8.      8.  Evaluate  ∫  (2x2+y2)dx +(3y-4x)dy, Where C is the boundary of triangle ABC whose    vertices are A=(0,0), B=(2,0),C=(2,1).

9.      9.   Evaluate ∫(ydx-xdy), , where C is given by the ellipse x2/a2 + y2/b2 = 1 in the                anticlockwise direction.

        10.  Evaluate ∫(3xydx-y2dy), where C is the curve In the xy-plane y=2x2 from (0,0) to        (1,2).

        11.  Find the value of x2y dx+y2x dy taken in the clock wise sense along the hexagon whose vertices  are (3a,0),( ∓2a, ∓3a).

        12. Show that (x2dy-y2dx)/(x5/3+y5/3) = (3π/16) a4/3, where C is the quarter of the asteroid x= a cos3t,

       Y= a sin3t, from (a,0) to (0,a).

 13. Evaluate  (x2+y2)dx-2xydy, where C is the rectangle x=0,x=a,y=0,y=b.

 14. Evaluate (2a-y)dx-(a-y)dy, where C is given by x=a(t-sint), y= a (1-cost).

#            line #integrals  #plane #curve  #closed #orientation

              #problems #parabola #circle #triangle














































































































































































Page navigation



 

   


    

Comments

Popular posts from this blog

Welcome to my blog : DEVOTIONAL & MATHEMATICS # welcome # to #my #blog #devotional #& #mathematics

sin30=1/2 what it means? 🤔 #sin30

REAL ANALYSIS- INTRODUCTION #real #analysis #introduction