COMPACT SETS IN METRIC SPACES : #compact #metric #spaces


Compact Sets In Metric Spaces :

 Contents :

* Open Cover of a metric space

* Open Sub Cover of a metric space 

* Compact Set 

*  Examples

                                                                                   


Open Cover :

                      Let K be a non-empty subset of a metric space X. A collection {G⍺/⍺ꜪΔ} of                            open subsets of X is called an open cover of K if K⊆⋃G⍺.

                      For example : Consider a metric space (R,d) where R is the set of all real                                                        numbers and 

                                              let K=(0,1).

                                              Put Gn=(1/n, 1-1/n) n=3,4,5,...

                                             Then {Gn} is an open cover of K=(0,1).

Open subcover :

                       Suppose {G⍺/⍺ꜪΔ} is an open cover of a nonempty subset K of a metric                                 space X. Then a finite collection {G⍺1,G⍺2,...,G⍺n} of open subsets of X is                           called an open subcover of the open cover {G⍺/⍺ꜪΔ} if                                                           K⊂G⍺1G⍺2...G⍺n.

Compact set:

                      A non empty subset K of a metric space X is called compact if every open                              cover of K has a finite subcover.  

                                                         

     



  Examples :                                                                                                                                                       1. Consider a metric space (R,d) where R is the set of all real                                                        numbers Then K= [0,1]⊂ R is compact.

                       2. Earth is compact since because the earth is covered with infinite number of                             sand particles and water drops and then earth covered with 5 oceans and 7                               continents. .

                      3. Human body is compact because human body is covered by infinite number                           of blood cells and also covered by finite number of parts i.e head, shoulders,                           two legs , two hands etc.                                                                                                         4. The sky is not compact since the sky is covered with infinite number of                                    stars, galaxies, air particles, black holes, planets etc but the sky is  not                                      covered with any finite number of things.

properties of compact set :

 1. compact subsets of metric spaces are closed.

 2. Compact subsets of metric spaces are bounded.

 2. Closed subsets of compact sets are compact.

 3. Intersection of a closed and a compact set is compact.

 4. Every K-cell is compact.

 5. A nonempty subset E of the real line is compact iff it is closed and bounded 

    { Heine-Borel Theorem} 


people also see:

    * what is a metric space?

    * What is pseudo metric?

    * What is an open set?

    * What is the difference between limit and limit point?

    *  What is a countable set?

    *  What is an interior of a set?


                                                                   






Comments

Popular posts from this blog

Welcome to my blog : DEVOTIONAL & MATHEMATICS # welcome # to #my #blog #devotional #& #mathematics

sin30=1/2 what it means? 🤔 #sin30

REAL ANALYSIS- INTRODUCTION #real #analysis #introduction