LINE INTEGRALS- PROBLEMS & SOLUTIONS #lineintegrals #problems #solutions

 LINE INTEGRALS - PROBLEMS &SOLUTIONS :

      We have discussed about the definitions and development of line integrals

Here we going to solve some problems regarding line integrals.

 PROBLEM 1. Evaluate  ∫ dx/(x+y), Where C  is the curve x=at2,y=2at, 0t2.

SOLUTION

                       


PROBLEM 2: Show that ∫ xy dx =4/5, where C is the arc of the parabola y2=x from (1,-1) to   (1,1).

SOLUTION

                      


3.  PROBLEM 3Show that ∫ [(x-y)3dx+(x-y)3dy]=3πa4, where C Is the circle x2+y2=a2 in       the counter clockwise sense.

        SOLUTION : 

                         


         PROBLEM 4Find the value of ∫(x+y2)dx+(x2-y)dy, taken in the clockwise sense along     the closed curve C formed by y2=x and y=x between (0,0) and (1,1).

            SOLUTION :

                      


         PROBLEM 5 Show that∫(xdy-ydx)/x2+y2= -2π, round the circle x2+y2=1; or any simple   closed curve containing the origin in its interior.

          SOLUTION :

                                


        PROBLEM 6 Evaluate ∫x2+y2dx and x2+y2 dy where C is the arc of the parabola y2=4ax between  (0,0) and (a,2a).

          SOLUTION :

                          


        PROBLEM 7 : Show that ∫x2 dx+xy dy=0, where C is the arc of the circle x2+y2=1 from (1,0)  to (0,1).

         SOLUTION :

                                


         PROBLEM 8 : Evaluate  ∫  (2x2+y2)dx +(3y-4x)dy, Where C is the boundary of triangle ABC whose vertices are A=(0,0), B=(2,0),C=(2,1).

          SOLUTION :

                  

PROBLEM 9 : Evaluate ∫(ydx-xdy), , where C is given by the ellipse x2/a2 + y2/b2 = 1 in the anticlockwise direction.

     SOLUTION :

                  


       PORBLEM 10Evaluate ∫(3xydx-y2dy), where C is the curve In the xy-plane y=2x2 from (0,0) to (1,2).

          SOLUTION :

                          


      PROBLEM 11 : Find the value of x2y dx+y2x dy taken in the clock wise sense along the hexagon whose vertices  are (3a,0),( ∓2a, ∓3a).

       SOLUTION :

                 

                       

      
                 

             

PROBLEM 12  :  Show that (x2dy-y2dx)/(x5/3+y5/3) = (3π/16) a4/3, where C is the quarter of the asteroid x= a cos3t, y= a sin3t, from (a,0) to (0,a).
 SOLUTION :
                  

PROBLEM 13: Evaluate  (x2+y2)dx-2xydy, where C is the rectangle x=0,x=a,y=0,y=b.
 SOLUTION :
                        
PROBLEM  14 : Evaluate  (2a-y)dx-(a-y)dy, where C is given by x=a(t-sint), y= a (1-cost).
SOLUTION :
                     

         

Comments

Popular posts from this blog

Welcome to my blog : DEVOTIONAL & MATHEMATICS # welcome # to #my #blog #devotional #& #mathematics

sin30=1/2 what it means? 🤔 #sin30

REAL ANALYSIS- INTRODUCTION #real #analysis #introduction