COMPLETE METRIC SPACE #complete #metric $space



COMPLETE METRIC SPACE :

                                                       A metric space X with the metric d is called a complete metric space 

  if every cauchy sequence in x converges in X.     ∴

For Example : 1. consider the metric space (0,1) and {1/n} is a cauchy sequence in (0,1).

                          We know that the sequence {1/n} converges to 0.

                          since this limit point 0 does not lies in (0,1) , (0,1) is not a complete metric space.                 

                          Instead of (0,1)  if we consider  the metric space [0,1], the above mensioned limit

                          point 0 lies in [0,1] and hence [0,1] is a complete metric space.

                        2. The real line is a complete metric space. 

                        3. The complex plane is also complete which is explained in the following argument .

                             Let { zn } , where zn = an + bn , be a Cauchy sequence of complex numbers.                                             Then { an } and  { bn } are themselves Cauchy sequences of real numbers.

                             Since the real line is complete and { an } and { bn } are Cauchy sequences in the real                               line R, the sequences  { an } and { bn } and convergent to the real numbers a and b                                  (Say ) i.e. an → a and bn → b.

                             Since an → a, for a given ꜫ > 0, there  is a positive integer m1 such that | an – a | < ꜫ/2                               for all n    m1

                              Since  bn → b, for a given ꜫ > 0, there  is a positive integer m2 such that | bn – b | <                                  ꜫ/2  for all n    m2

                          Put m= max { m1, m2 }

                             ∴ | an – a | < ꜫ/2 and | bn – b | < ꜫ/2 for all  n m

                              Put z= a+ib.

                            Now |zn – z | = | ( an +ibn ) – (a+ib) |

                                                 = | (an -a) + i ( bn -b) |

                                                ≤ | an – a | + |bn – b |

                                                < ꜫ/2 + ꜫ/2 = ꜫ.

                              ∴ | zn – z | < ꜫ for all n M

                              Thus  { zn } converges to z in the complex plane C.

                              Hence the complex plane is a complete metric space.

 A convergent sequence is not convergent " on its own ; it must converge to some point in the space.


* open and closed sets

* convergence of  a sequence

* extended real number system

* why | -2 | = 2 ? original meaning

*4th dimensional object HYPERCUBE















 #complete #metric #space #real line #complex #plane #convergence #of #a #sequence


                                              

         

Comments

Post a Comment

Popular posts from this blog

sin30=1/2 what it means? 🤔 #sin30

Welcome to my blog : DEVOTIONAL & MATHEMATICS # welcome # to #my #blog #devotional #& #mathematics

REAL ANALYSIS- INTRODUCTION #real #analysis #introduction