Evaluate ∬ √(4x^2-y^2) dxdy where E is the region bounded by the lines y=0,y=x and x=1. DOUBLE INTEGRALS #double integral
* Sketch the region of integration and evaluate ∬ xsiny dydx where x=0 to x=𝛑 and y-0 to y=x.
reversed for ∬ 3y dxdy where y=0 to y=1 and x= -√(1-y^2) to y=√(1-y ^2).
* Evaluate ∬f(x,y)dxdy , where f(x,y)=x2+y2 and E={(x,y)/y=x2,x=2,y=1}
* Evaluate ∬ xydxdy where E is the region bounded by xy=1,y=0,y=x,x=2.
#DOUBLE #integral #doubleintegral #sum



Comments
Post a Comment