Evaluate ∬xy(x+y)2 /(x2+y2) dxdy where E is region bounded y=0,y=x,x2+y2=a2 in the first quadrant. DOUBLE INTEGRAL #double #integrals

PROBLEM :

                       Evaluate xy(x+y)2 /(x2+y2) dxdy where E is region bounded y=0,y=x,x2+y2=a2                        in the first quadrant.

 SOLUTION :



 Evaluate ∬ f(x,y) dxdy where f(x,y)= (2y-1)/ x+1 , and E is the region bounded by x=0,y=0, y=2x-        4.

 *   Change the order of integration and hence show that ∬dx dy/[ ( 1+e^y) √(1-x^2-y^2)]   = (𝝿 /2)                    log(2e/(1+e) where x-0 to x=1 and y=0 to y=√(1-x^2)

 *   In the integral ∬ (4-y) dydx, change the order of integration and evaluate the integral where x=2 to            x=4 and y=4/x to y=(20-4x)/(8-x)

 *  Sketch the region of integration and evaluate ∬ xsiny dydx where x=0 to x=𝛑 and y-0 to y=x.

 *  Sketch the region of integration and write an equivalent double integral with the order of integration

     reversed for ∬ 3y dxdy where y=0 to y=1 and x= -√(1-y^2) to y=√(1-y ^2).

  *Evaluate ∬ √(4x^2-y^2) dxdy where E is the region bounded by the lines y=0,y=x and            x=1.

 *  Evaluate ∬xy(x+y) dxdy where E is the region bounded by y=x^2 and y=x.

  *  Evaluate  ∬f(x,y)dxdy , where f(x,y)=x2+y2 and E={(x,y)/y=x2,x=2,y=1}   

 *  Evaluate ∬ xydxdy where E is the region bounded by xy=1,y=0,y=x,x=2.      

  *  Show that  xy2 dy- x2y dx = 35 a4π/16 where C is the counter clockwise curve of the cardiod 

       r=a(1+cosθ ).

 *    Evaluate  e^(x2+y2) dxdy , where E is the semi circular region bounded by the X-axis and                               the curve y=(1-x2).

 *     Using polar coordinates, show that ∫dx ∫√X2+y   dy =1/6[√2 + log ( 1+√2) ]                                    

Comments

Popular posts from this blog

sin30=1/2 what it means? 🤔 #sin30

Welcome to my blog : DEVOTIONAL & MATHEMATICS # welcome # to #my #blog #devotional #& #mathematics

REAL ANALYSIS- INTRODUCTION #real #analysis #introduction