Euclidean Algorithm - Number Theory #Euclidean #Algorithm #- #Number #Theory

 Euclid Algorithm or Division Algorithm : 

Statement : 

            Given integers a and b with b > 0 , there exists a unique pair of integers q and r such that 

             a = bq + r , with 0 ≤ r < b. Moreover , r = 0 if, and  only, if b/a.

Proof : 

            Suppose a and b are two integers with b > 0. 

             Let S = { y / y= a - bx , x is an integer, y ≥ 0 } .

             Clearly S is a non - empty set of non - negative integers.

             ∴ By well- ordering Principle , S must have a smallest member , say a - bq for                   some integer q .

             Let r = a - bq.

             Hence r is the smallest among all the members of S.

              We have r = a - bq 

                       => a= bq + r and r ≥ 0.

            Now we prove r < b.

            In contrary, assume that r ≥ b.

                                              r - b ≥ 0.

                                    Also  r - b <  r.

             Now r - b = ( a - bq ) - b

                             = a - bq - b

                             = a - ( q +1 ) b 

                      r- b  𝟄 S.

              ∴ we have r - b 𝟄 S and r - b < r

              Since r- b < r and r is the smallest member of S, we must have r - b is not in S.

               This is a controdiction to r- b 𝟄 S.

               ∴ Our assumption is false.

               ∴ we have r < b.

             Hence a = bq + r with 0 ≤ r < b.

Uniqueness of q and r :

               If  possible, suppose there exists q', r' such that a = bq' + r' with 0 ≤ r' < b

               we have a = bq +r = bq'+ r'

                               => bq-bq' = r' - r

                               => b ( q - q') = r' - r 

                                => b / q - q'

               If r' -r ≠ 0 then b ≤ | r '- r' |

              Since r < b and r' < b => r - r' < b

                                                    | r - r' | < b

            This is a controdiction to b ≤ | r - r' | 

            ∴      r' - r = 0

                 => r ' = r.

            We have b ( q - q' ) = r' - r 

                     =>  b ( q - q' ) = 0             | since r' - r = 0 | 

                      b = 0 or q - q' = 0.

                 Since b > 0 , we have q - q' = 0

                                                          q = q'

              Hence a = bq + r = bq' + r'

                       => q = q' and r= r'

               In the representation of a = bq + r, q and r are unique.

          Moreover, suppose r = 0.

                            ∴ a = bq + r

                        < = > a = bq 

                         < = > b/a

                                          *** Hence the Proof ***


Note : 

         In the above theorem, the integers q and  r are called the quotient and remainder when a is divided with b.

  * Historical background of Number Theory

  *  Properties of Numbers

 * Fundamental theorem of arithmetic

        































































#Euclidean #Algorithm #- #Number #Theory

                

Comments

Popular posts from this blog

sin30=1/2 what it means? 🤔 #sin30, #trigonometry

Welcome to my blog : DEVOTIONAL & MATHEMATICS # welcome # to #my #blog #devotional #& #mathematics

REAL ANALYSIS- INTRODUCTION #real #analysis #introduction