Fundamental theorem of Arithmetic : Number Theory #Fundamental #theorem #of #Arithmetic : #Number #Theory

 

The Fundamental Theorem of Arithmetic : 

 Statement : Every integer n > 1 can be represented as a product of prime factors in                            only one way, apart from the order of the factors.

 Proof :

     Consider the statement

      P(n) : Every integer n >  1 can be represented as a product of prime factors in only                  one way.

     Now we prove this statement by using mathematical induction on n.

      We have 2 = 21

                          = A product of prime factor.

      The statement is true for n=2 i.e. p(2) is true.

      Assume that p(k) is true i.e. the statement is true for k where 1 < k  < n.

      Now we prove the statement is true for all n.

      If n is a prime number then nothing to prove.

     Suppose n is a composite number

     i.e. n = p1 p2 … ps where each Pi ( 1 I ≤ s ) is prime.

    Now we prove the representation of n is unique.

    But take another representation of n as n= q1 q2 … qt . where each qi ( 1 I ≤ t ) is               prime.

     we have p1 p2 … ps = q1 .q2 . … qt

      Now we prove t = s and each p = some q.

     Since  p1 p2 … ps = q1 q2 … qt , we have  p1 / q1 q2 … qt .

ð  P1 / q1 or p1 / q2 or  … or p1 / qt.

 Suppose p1 / q1.

Since p1 / q1 and p1 and q1 are primes , we have p1 = q1.

n = p1 p2 … ps = q1 q2 … qt  

                = p1 p2 … ps = p1 q2 … qt. ( since p1 =q1 )

                = p2 p3 …ps = q2 q3 … qt.

    Now we have p2 / q2 q3 … qt

ð  P2 / q2 or p2  / q3 or … or  p2 / qt

Suppose p2 / q2

Again since p2 and q2 are prime we have p2 = q2

On continue the above process we get p3 =q3 , p4 = q4, … ps = qt.

i.e each p is equal to some q.

Hence the representation of n = p1 p2 … ps is a product of prime factors in one way.

                Hence the proof.

    NOTE : 

                 In the factorization of an integer n, a particular prime p may occur more                         than  once.

                 If the distinct prime factors  of n are p1 , p2 , … , ps and each pi occurs as a                    factor ai times , 

                we can write  n  = p1^a1. P2^a2 … ps^as .     ( here p^a represents pa)

                This is called the factorization of n into prime powers.


  * Historical background of Number Theory

  *  Properties of Numbers













































#Fundamental #theorem #of #Arithmetic  : #Number #Theory

Comments

Popular posts from this blog

sin30=1/2 what it means? 🤔 #sin30, #trigonometry

Welcome to my blog : DEVOTIONAL & MATHEMATICS # welcome # to #my #blog #devotional #& #mathematics

REAL ANALYSIS- INTRODUCTION #real #analysis #introduction